rc.gpf.models§
Contains extensions to gpflow.models.
Classes§
Gaussian Process Regression. |
Module Contents§
- class MOGPR(data, kernel, mean_function=None, noise_variance=1.0)§
Bases:
gpflow.models.model.GPModel
,gpflow.models.training_mixins.InternalDataTrainingLossMixin
Gaussian Process Regression.
This is a vanilla implementation of MOGP regression with a Gaussian likelihood. Multiple columns of Y are treated independently.
The log likelihood of this model is given by
\[\log p(Y \,|\, \mathbf f) = \mathcal N(Y \,|\, 0, \sigma_n^2 \mathbf{I})\]To train the model, we maximise the log _marginal_ likelihood w.r.t. the likelihood variance and kernel hyperparameters theta. The marginal likelihood is found by integrating the likelihood over the prior, and has the form
\[\log p(Y \,|\, \sigma_n, \theta) = \mathcal N(Y \,|\, 0, \mathbf{KXX} + \sigma_n^2 \mathbf{I})\]- Parameters:
data (gpflow.models.model.RegressionData)
kernel (MOStationary)
mean_function (Optional[MOMeanFunction])
noise_variance (float)
- property M§
The input dimensionality.
- property L§
The output dimensionality.
- log_marginal_likelihood()§
Computes the log marginal likelihood.
\[\log p(Y | \theta).\]- Return type:
tensorflow.Tensor
- predict_f(Xnew, full_cov=False, full_output_cov=False)§
This method computes predictions at X in R^{N x D} input points
\[p(F* | Y)\]where F* are points on the MOGP at new data points, Y are noisy observations at training data points. Note that full_cov => full_output_cov (regardless of the ordinate given for full_output_cov), to avoid ambiguity.
- Parameters:
Xnew (gpflow.models.model.InputData)
full_cov (bool)
full_output_cov (bool)
- Return type:
gpflow.models.model.MeanAndVariance