rc.gpr.base§
Basic facilities for GPR Models.
Classes§
A (Co)Variance Matrix, efficiently represented. |
Module Contents§
- class Variance(sd, SDfloor=0, corr=None)§
Bases:
rc.base.models.tc.nn.Module
A (Co)Variance Matrix, efficiently represented.
- Parameters:
sd (TC.BatchVector)
SDfloor (float)
corr (TC.BatchVector | None)
- forward(is_cho=True)[source]§
Alias for
self.__call__()
. Do not call.- Parameters:
is_cho (bool) – False to return the variance, True to return its Cholesky lower triangle.
- Return type:
TC.BatchMatrix | TC.BatchVector
- Returns:
tc.cholesky(variance) if is_cho else variance
. In either case the result is shaped (…,L,L), or (…,L,1) if diagonal (not covariant).
- classmethod create(variance, SDfloor=0)[source]§
Create a Variance object from a diagonal (…,L,1) CoVector or square (…,L,L) Matrix.
- Parameters:
variance (TC.BatchMatrix | TC.BatchCoVector) – The (co)variance matrix to be stored. If a BatchedCovector is supplied, this represents a diagonal variance matrix of dimension
variance.shape[-2]
.SDfloor (float) – The lower bound applicable to the Standard Deviation.
- Return type:
rc.base.models.Self
Returns: The Variance object efficiently representing
variance
.