rc.gpr.kernels§
Contains Kernel classes for gpr.
Classes§
Module Contents§
- class Kernel(folder, read_data=False, **kwargs)§
Bases:
rc.base.models.DataBase
Abstract interface to a Kernel. Essentially this is the code contract with the MOGP interface.
- Parameters:
folder (rc.base.definitions.Path | str)
read_data (bool)
kwargs (NP.Matrix)
- class Data§
Bases:
rc.base.models.Tables
The Data set of a Kernel.
- calibrate(**kwargs)§
Merely sets which data are trainable.
- Parameters:
kwargs (rc.base.definitions.Any)
- Return type:
rc.base.definitions.Dict[str, rc.base.definitions.Any]
- property TYPE_IDENTIFIER: str§
- Classmethod:
- Return type:
str
The type of this Kernel object or class as ‘__module__.Kernel.__name__’.
- classmethod TypeFromIdentifier(TypeIdentifier)§
Convert a TypeIdentifier to a Kernel NamedTuple.
- Parameters:
TypeIdentifier (str) – A string generated by Kernel.TypeIdentifier().
- Returns:
The type of Kernel that _TypeIdentifier specifies.
- Return type:
rc.base.definitions.Type[Kernel]
- classmethod TypeFromParameters(parameters)§
Recognize the NamedTuple of a Kernel from its Data.
- property L: int§
The output (Y) dimensionality, or 1 for a single kernel shared across all outputs.
- Return type:
int
- property M: int§
The input (X) dimensionality, or 1 for an isotropic kernel.
- Return type:
int
- property is_covariant: bool§
Whether the kernel is covariant between outputs.
- Return type:
bool
- broadcast_parameters(variance_shape, M)§
Broadcast this kernel to higher dimensions. Shrinkage raises errors, unchanged dimensions silently nop. A diagonal variance matrix broadcast to a square matrix is initially diagonal. All other expansions are straightforward broadcasts. :param variance_shape: The new shape for the variance, must be (1, L) or (L, L). :param M: The number of input Lengthscales per output.
Returns:
self
, for chaining calls. :raises IndexError: If an attempt is made to shrink a parameter.- Parameters:
variance_shape (rc.base.definitions.Tuple[int, int])
- Return type:
- property implementation: rc.base.definitions.Tuple[rc.base.definitions.Any, Ellipsis]§
- Abstractmethod:
- Return type:
rc.base.definitions.Tuple[rc.base.definitions.Any, Ellipsis]
The implementation of this Kernel in GPFlow. If
self.variance.shape == (1,L)
an L-tuple of kernels is returned. Ifself.variance.shape == (L,L)
a 1-tuple of multi-output kernels is returned.
- class RBF(folder, read_data=False, **kwargs)§
Bases:
Kernel
Abstract interface to a Kernel. Essentially this is the code contract with the MOGP interface.
- Parameters:
folder (rc.base.definitions.Path | str)
read_data (bool)
kwargs (NP.Matrix)
- property implementation: rc.base.definitions.Tuple[rc.base.definitions.Any, Ellipsis]§
The implement of this Kernel in GPFlow. If
self.variance.shape == (1,1)
a 1-tuple of kernels is returned. Ifself.variance.shape == (1,L)
an L-tuple of kernels is returned. Ifself.variance.shape == (L,L)
a 1-tuple of multi-output kernels is returned.- Return type:
rc.base.definitions.Tuple[rc.base.definitions.Any, Ellipsis]