rc.task.regressions§
Functionality for linear regression
Methods§
|
Generalized Least Squares linear regression. |
Module Contents§
- gls(X, y, cov_y, is_through_origin=False)§
Generalized Least Squares linear regression.
- Parameters:
X (NP.Matrix) – An (N,M) matrix of regression variables
y (NP.Matrix) – An (N,1) vector of observations.
cov_y (NP.Matrix) – The (N,N) covariance matrix of observations
y
.is_through_origin (bool) – True to constrain to
y(0)=0
- Return type:
rc.base.definitions.Tuple[TF.Vector, TF.Matrix]
- Returns: A pair consisting of the (M+1,1) – or (M,1) if
is_through_origin
– regression coefficients and their covariance matrix, where the intercept is the first regression coefficient – or absent if
is_through_origin
.